§ 31. Действия над линейными операторами

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Сумма линейных операторов (1)

Определение

Пусть V — векторное пространство над полем F, а $\mathcal A$ и $\mathcal B$ — линейные операторы в V. Суммой операторов $\mathcal A$ и $\mathcal B$ называется оператор $\mathcal S$ в V, задаваемый правилом $\mathcal S(\mathbf x)=\mathcal A(\mathbf x)+\mathcal B(\mathbf x)$ для всякого $\mathbf x\in V$. Сумма операторов $\mathcal A$ и $\mathcal B$ обозначается через $\mathcal A+\mathcal B$.

Множество всех линейных операторов в V обозначим через $\mathsf{Hom}(V)$.

Предложение о свойствах суммы операторов

Сумма линейных операторов является линейным оператором. Множество $\mathsf{Hom}(V)$ с операцией сложения операторов является абелевой группой.

 $m{\mathcal{L}}$ оказательство. Пусть $\mathcal{A},\mathcal{B}\in \mathsf{Hom}(V)$ и $\mathcal{S}=\mathcal{A}+\mathcal{B}$. Для любых $\mathbf{x},\mathbf{y}\in V$ и $t\in F$ имеем

$$\begin{split} \mathcal{S}(\mathbf{x}+\mathbf{y}) &= \mathcal{A}(\mathbf{x}+\mathbf{y}) + \mathcal{B}(\mathbf{x}+\mathbf{y}) = \mathcal{A}(\mathbf{x}) + \mathcal{A}(\mathbf{y}) + \mathcal{B}(\mathbf{x}) + \mathcal{B}(\mathbf{y}) = \\ &= \left(\mathcal{A}(\mathbf{x}) + \mathcal{B}(\mathbf{x})\right) + \left(\mathcal{A}(\mathbf{y}) + \mathcal{B}(\mathbf{y})\right) = \mathcal{S}(\mathbf{x}) + \mathcal{S}(\mathbf{y}) \quad \mathbf{u} \\ \mathcal{S}(t\mathbf{x}) &= \mathcal{A}(t\mathbf{x}) + \mathcal{B}(t\mathbf{x}) = t\mathcal{A}(\mathbf{x}) + t\mathcal{B}(\mathbf{x}) = t\left(\mathcal{A}(\mathbf{x}) + \mathcal{B}(\mathbf{x})\right) = t\mathcal{S}(\mathbf{x}). \end{split}$$

Следовательно, оператор $\mathcal S$ линеен.

Сумма линейных операторов (2)

Далее, если $\mathcal{A},\mathcal{B},\mathcal{C}\in\mathsf{Hom}(V)$, то

$$\begin{split} (\mathcal{A}+\mathcal{B})(\mathbf{x}) &= \mathcal{A}(\mathbf{x}) + \mathcal{B}(\mathbf{x}) = \mathcal{B}(\mathbf{x}) + \mathcal{A}(\mathbf{x}) = (\mathcal{B}+\mathcal{A})(\mathbf{x}) \quad \text{if } \\ \big((\mathcal{A}+\mathcal{B})+\mathcal{C}\big)(\mathbf{x}) &= (\mathcal{A}+\mathcal{B})(\mathbf{x}) + \mathcal{C}(\mathbf{x}) = \big(\mathcal{A}(\mathbf{x})+\mathcal{B}(\mathbf{x})\big) + \mathcal{C}(\mathbf{x}) = \\ &= \mathcal{A}(\mathbf{x}) + \big(\mathcal{B}(\mathbf{x})+\mathcal{C}(\mathbf{x})\big) = \mathcal{A}(\mathbf{x}) + (\mathcal{B}+\mathcal{C})(\mathbf{x}) = \\ &= \big(\mathcal{A}+(\mathcal{B}+\mathcal{C})\big)(\mathbf{x}), \end{split}$$

откуда $\mathcal{A}+\mathcal{B}=\mathcal{B}+\mathcal{A}$ и $(\mathcal{A}+\mathcal{B})+\mathcal{C}=\mathcal{A}+(\mathcal{B}+\mathcal{C})$. Нейтральным элементом по сложению является нулевой оператор \mathcal{O} , поскольку

$$(A + O)(x) = A(x) + O(x) = A(x) + 0 = A(x).$$

Обратным по сложению элементом к оператору $\mathcal{A} \in \text{Hom}(V)$ является оператор $-\mathcal{A}$, определяемый правилом $(-\mathcal{A})(\mathbf{x}) = -\mathcal{A}(\mathbf{x})$, поскольку

$$(\mathcal{A} + (-\mathcal{A}))(\mathbf{x}) = \mathcal{A}(\mathbf{x}) + (-\mathcal{A})(\mathbf{x}) = \mathcal{A}(\mathbf{x}) + (-\mathcal{A}(\mathbf{x})) =$$
$$= \mathcal{A}(\mathbf{x}) - \mathcal{A}(\mathbf{x}) = \mathbf{0} = \mathcal{O}(\mathbf{x}).$$

Предложение доказано.

Умножение линейного оператора на скаляр (1)

Определение

Пусть V — векторное пространство над полем F, \mathcal{A} — линейный оператор в V, а $t \in F$. Произведением оператора \mathcal{A} на скаляр t называется оператор \mathcal{B} в V, задаваемый правилом $\mathcal{B}(\mathbf{x}) = t\mathcal{A}(\mathbf{x})$ для всякого $\mathbf{x} \in V$. Произведение оператора \mathcal{A} на скаляр t обозначается через $t\mathcal{A}$.

Предложение о пространстве линейных операторов

Произведение линейного оператора на скаляр является линейным оператором. Множество $\operatorname{Hom}(V)$ с операциями сложения операторов и умножения оператора на скаляр является векторным пространством.

oДоказательство. Пусть $\mathcal{A},\mathcal{B}\in \mathsf{Hom}(V)$, $\mathbf{x},\mathbf{y}\in V$ и $t,s\in F$. Тогда:

$$\begin{split} (t\mathcal{A})(\mathbf{x}+\mathbf{y}) &= t\big(\mathcal{A}(\mathbf{x}+\mathbf{y})\big) = t(\mathcal{A}(\mathbf{x})+\mathcal{A}(\mathbf{y})\big) = t\mathcal{A}(\mathbf{x})+t\mathcal{A}(\mathbf{y}) = \\ &= (t\mathcal{A})(\mathbf{x})+(t\mathcal{A})(\mathbf{y}) \ \mathbf{u} \\ (t\mathcal{A})(s\mathbf{x}) &= t\big(\mathcal{A}(s\mathbf{x})\big) = t\big(s\mathcal{A}(\mathbf{x})\big) = (ts)\big(\mathcal{A}(\mathbf{x})\big) = s\big(t\mathcal{A}(\mathbf{x})\big) = s\big((t\mathcal{A})(\mathbf{x})\big). \end{split}$$

Следовательно, tA — линейный оператор.

Умножение линейного оператора на скаляр (2)

Далее,

$$(t(\mathcal{A} + \mathcal{B}))(\mathbf{x}) = t((\mathcal{A} + \mathcal{B})(\mathbf{x})) = t(\mathcal{A}(\mathbf{x}) + \mathcal{B}(\mathbf{x})) = t(\mathcal{A}(\mathbf{x}) + t\mathcal{B}(\mathbf{x})) = t(\mathcal{A}(\mathbf{x}) +$$

т. е. t(A + B) = tA + tB;

$$\begin{aligned} ((t+s)\mathcal{A})(\mathbf{x}) &= (t+s)\mathcal{A}(\mathbf{x}) = t\mathcal{A}(\mathbf{x}) + s\mathcal{A}(\mathbf{x}) = \\ &= (t\mathcal{A})(\mathbf{x}) + (s\mathcal{A})(\mathbf{x}) = (t\mathcal{A} + s\mathcal{A})(\mathbf{x}), \end{aligned}$$

т. е. tA + sA = (t + s)A;

$$(t(sA))(x) = t((sA)(x)) = (ts)(A(x)) = ((ts)A)(x),$$

т. е. $t(s\mathcal{A})=(ts)\mathcal{A}$; наконец,

$$(1 \cdot \mathcal{A})(\mathsf{x}) = 1 \cdot (\mathcal{A}(\mathsf{x})) = \mathcal{A}(\mathsf{x}),$$

т. е. $1 \cdot \mathcal{A} = \mathcal{A}$. С учетом предложения о свойствах суммы операторов, мы получаем, что в $\mathsf{Hom}(V)$ выполнены все аксиомы векторного пространства.

Изоморфизм векторных пространств линейных операторов и матриц (1)

Теорема о пространствах линейных операторов и матриц

Если V — векторное пространство над полем F и $\dim V = n$, то векторные пространства Hom(V) и $F^{n\times n}$ изоморфны.

Доказательство. Зафиксируем в V базис $P = \{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_n\}$. Определим отображение φ из пространства $\mathrm{Hom}(V)$ в пространство $F^{n \times n}$ правилом: если \mathcal{A} — линейный оператор в V, то $\varphi(\mathcal{A})$ — матрица оператора \mathcal{A} в базисе P. Пусть $\mathcal{A}, \mathcal{B} \in \mathrm{Hom}(V)$ и $t \in F$. Надо проверить, что отображение φ биективно и выполнены равенства

$$\varphi(\mathcal{A} + \mathcal{B}) = \varphi(\mathcal{A}) + \varphi(\mathcal{B}) \text{ in } \varphi(t\mathcal{A}) = t\varphi(\mathcal{A}). \tag{1}$$

В матрице $\varphi(\mathcal{A}+\mathcal{B})$ по столбцам записаны координаты векторов вида $(\mathcal{A}+\mathcal{B})(\mathbf{p}_i)$ в базисе P, а в матрицах $\varphi(\mathcal{A})$ и $\varphi(\mathcal{B})$ — координаты векторов $\mathcal{A}(\mathbf{p}_i)$ и $\mathcal{B}(\mathbf{p}_i)$ соответственно в том же базисе $(i=1,2,\ldots,n)$. Поскольку $(\mathcal{A}+\mathcal{B})(\mathbf{p}_i)=\mathcal{A}(\mathbf{p}_i)+\mathcal{B}(\mathbf{p}_i)$, координаты вектора $(\mathcal{A}+\mathcal{B})(\mathbf{p}_i)$ равны сумме координат векторов $\mathcal{A}(\mathbf{p}_i)$ и $\mathcal{B}(\mathbf{p}_i)$. Первое из равенств (1) доказано. Второе из них проверяется вполне аналогично.

Изоморфизм векторных пространств линейных операторов и матриц (2)

Проверим, что отображение φ биективно. Если $\mathcal{A},\mathcal{B}\in \mathsf{Hom}(V)$ и $\varphi(\mathcal{A})=\varphi(\mathcal{B})$, то из определения матрицы линейного оператора вытекает, что операторы \mathcal{A} и \mathcal{B} одинаково действуют на базисных векторах пространства V. Но тогда $\mathcal{A}=\mathcal{B}$, так как линейный оператор однозначно определяется своим действием на базисных векторах. Следовательно, отображение φ инъективно. Далее, из теоремы существования и единственности линейного оператора и определения матрицы линейного оператора вытекает, что если A — произвольная квадратная матрица порядка n, то $A=\mathcal{A}_P$ для некоторого оператора $\mathcal{A}\in \mathsf{Hom}(V)$. Следовательно, отображение φ сюръективно.

Как отмечалось в § 22, размерность пространства матриц размера $m \times n$ равна mn. Поэтому из доказанной теоремы вытекает

Следствие о размерности пространства линейных операторов

Если V — векторное пространство и $\dim V = n$, то $\dim \operatorname{Hom}(V) = n^2$.

Умножение линейных операторов (1)

Линейный оператор, действующий в векторном пространстве V, является отображением из V в себя. В соответствии с общим понятием произведения отображений (см. §1), можно говорить о произведении линейных операторов $\mathcal A$ и $\mathcal B$, действующих в V. Таким образом, произведение операторов $\mathcal A$ и $\mathcal B$ — это оператор $\mathcal C$ в V, задаваемый правилом $\mathcal C(\mathbf x)=\mathcal B(\mathcal A(\mathbf x))$ для всякого $\mathbf x\in V$. Произведение операторов $\mathcal A$ и $\mathcal B$ обозначается через $\mathcal A\mathcal B$.

Предложение о матрице произведения линейных операторов

Пусть \mathcal{A} и \mathcal{B} — линейные операторы в векторном пространстве V над полем F, $\mathcal{C}=\mathcal{AB}$, а P — базис пространства V. Оператор \mathcal{C} является линейным. Если A, B и C — матрицы операторов \mathcal{A} , \mathcal{B} и \mathcal{C} в базисе P соответственно, то C=BA.

Доказательство. Если $\mathbf{x}, \mathbf{y} \in V$ и $t \in F$, то

$$\begin{split} \mathcal{C}(\mathbf{x}+\mathbf{y}) &= \mathcal{B}\big(\mathcal{A}(\mathbf{x}+\mathbf{y})\big) = \mathcal{B}\big(\mathcal{A}(\mathbf{x}) + \mathcal{A}(\mathbf{y})\big) = \\ &= \mathcal{B}\big(\mathcal{A}(\mathbf{x})\big) + \mathcal{B}\big(\mathcal{A}(\mathbf{y})\big) = \mathcal{C}(\mathbf{x}) + \mathcal{C}(\mathbf{y}) \quad \mathbf{u} \\ \mathcal{C}(t\mathbf{x}) &= \mathcal{B}\big(\mathcal{A}(t\mathbf{x})\big) = \mathcal{B}\big(t\mathcal{A}(\mathbf{x})\big) = t\big(\mathcal{B}(\mathcal{A}(\mathbf{x})\big) = t\mathcal{C}(\mathbf{x}). \end{split}$$

Следовательно, \mathcal{C} — линейный оператор.

Умножение линейных операторов (2)

Осталось проверить равенство C=BA. Пусть $\mathbf{x}\in V$. Используя формулу (2) из § 29, получаем, что, с одной стороны, $\left[\mathcal{C}(\mathbf{x})\right]_P=C\cdot [\mathbf{x}]_P$, а с другой, $\left[\mathcal{C}(\mathbf{x})\right]_P=\left[(\mathcal{AB})(\mathbf{x})\right]_P=\left[\mathcal{B}(\mathcal{A}(\mathbf{x}))\right]_P=B\cdot \left[\mathcal{A}(\mathbf{x})\right]_P=BA\cdot [\mathbf{x}]_P$. Таким образом, $C\cdot [\mathbf{x}]_P=BA\cdot [\mathbf{x}]_P$. Поскольку это равенство выполнено для любого вектора $\mathbf{x}\in V$, в качестве столбца $[\mathbf{x}]_P$ может выступать произвольная матрица размера $n\times 1$ над полем F, где $n=\dim V$. В силу ослабленного закона сокращения для матриц (см. § 25), имеем C=BA

Значение многочлена от линейного оператора

Для любого оператора $\mathcal{A}\in \operatorname{Hom}(V)$ и любого натурального n определим по индукции оператор \mathcal{A}^n : $\mathcal{A}^1=\mathcal{A}$, а если n>1, то $\mathcal{A}^n=\mathcal{A}\cdot\mathcal{A}^{n-1}$. Кроме того, положим $\mathcal{A}^0=\mathcal{E}$. Это позволяет определить значение многочлена от линейного оператора подобно тому, как это было сделано в § 25 для квадратных матриц: если $f(x)=a_nx^n+a_{n-1}x^{n-1}+\cdots+a_0\in F[x]$, то, по определению,

$$f(\mathcal{A}) = a_n \mathcal{A}^n + a_{n-1} \mathcal{A}^{n-1} + \cdots + a_0 \mathcal{E}.$$

Из предложения о матрице произведения линейных операторов вытекает следующее утверждение.

Предложение о матрице оператора f(A)

Если оператор A имеет в некотором базисе матрицу A, то оператор f(A) имеет в том же базисе матрицу f(A).

Многочлены, аннулирующие оператор (1)

Определение

Пусть \mathcal{A} — линейный оператор в векторном пространстве V над полем F. Говорят, что многочлен f аннулирует оператор \mathcal{A} , если $f(\mathcal{A}) = \mathcal{O}$.

Предложение о многочленах, аннулирующих линейный оператор

Для многочлена f(x) следующие условия эквивалентны:

- а) f(x) аннулирует линейный оператор A;
- б) f(x) аннулирует матрицу линейного оператора ${\cal A}$ в некотором базисе;
- в) f(x) аннулирует матрицу линейного оператора A в любом базисе.

Доказательство. Эквивалентность условий а) и в) вытекает из предложения о матрице оператора $f(\mathcal{A})$, а импликация в) \Longrightarrow б) очевидна. Осталось доказать импликацию б) \Longrightarrow в). Матрицы оператора в двух разных базисах подобны. Поэтому достаточно убедиться в том, что если матрицы A и B подобны и f(A) = O, то f(B) = O. В самом деле, пусть матрицы A и B подобны, т. е. $B = T^{-1}AT$ для некоторой невырожденной квадратной матрицы T, и $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$.

Многочлены, аннулирующие оператор (2)

Тогда

$$B^{k} = \underbrace{(T^{-1}AT)(T^{-1}AT)\cdots(T^{-1}AT)}_{k \text{ скобок}} =$$

$$= T^{-1}A(TT^{-1})A\cdots(TT^{-1})AT = T^{-1}A^{k}T,$$

для всякого натурального k, и потому

$$f(B) = a_n B^n + a_{n-1} B^{n-1} + \dots + a_0 E =$$

$$= a_n T^{-1} A^n T + a_{n-1} T^{-1} A^{n-1} T + \dots + a_0 T^{-1} E T =$$

$$= T^{-1} (a_n A^n + a_{n-1} A^{n-1} + \dots + a_0 E) T = T^{-1} f(A) T.$$

В частности, если
$$f(A) = O$$
, то $f(B) = O$.

В процессе доказательства последнего предложения проверен следующий факт, который пригодится нам в дальнейшем.

Замечание о степенях подобных матриц

Если A и B — квадратные матрицы одного и того же порядка и $B = T^{-1}AT$ для некоторой невырожденной квадратной матрицы T, а k — натуральное число, то $B^k = T^{-1}A^kT$.

Характеристический многочлен линейного оператора

Предложение о характеристических многочленах подобных матриц

Характеристические многочлены подобных матриц совпадают.

Доказательство. В самом деле, пусть $B = T^{-1}AT$. Используя свойства произведения матриц и свойства определителей, имеем

$$\begin{split} \chi_{\mathcal{B}}(x) &= |B - xE| = |T^{-1}AT - xT^{-1}ET| = |T^{-1}AT - T^{-1}(xE)T| = \\ &= |T^{-1}(A - xE)T| = |T^{-1}| \cdot |A - xE| \cdot |T| = \\ &= \frac{1}{|T|} \cdot |A - xE| \cdot |T| = |A - xE| = \chi_{\mathbf{A}}(x). \end{split}$$

Предложение доказано.

 Θ то предложение показывает, что если A и B — матрицы одного и того же линейного оператора в разных базисах, то $\chi_{\bf A}(x)=\chi_{\bf B}(x)$. Это делает корректным следующее

Определение

Характеристическим многочленом линейного оператора называется характеристический многочлен его матрицы в любом базисе. Характеристический многочлен оператора \mathcal{A} обозначается через $\chi_{_{A}}(x)$.

Теорема Гамильтона-Кэли для линейных операторов

Из теоремы Гамильтона—Кэли (см. § 25) непосредственно вытекает ее «операторная версия».

Теорема Гамильтона-Кэли для линейных операторов

Характеристический многочлен произвольного линейного оператора аннулирует этот оператор.

